recognition. The alternative assignment of the $\mathrm{N}-\mathrm{H}$ protons to the otherwise unexplained lines at $\delta 1.52$ or 2.5 is unpalatable since it implies a much larger change in ring current effect than is evidenced by the resonance frequency of the methine protons.
Tetra-benz-tetra-aza-porphin (Phthalocyanine). ${ }^{16}$ -The spectrum of this compound dissolved in concentrated $\mathrm{D}_{2} \mathrm{SO}_{4}$ consists of two lines (half-width ~ 15 c.p.s.) at $\delta 8.52$ and 9.59 (measured as described in the Experimental Section). In sulfuric acid solution phthalocyanine is almost certainly in the di-cation form, and the four benz-pyrrole rings are thus equivalent through resonance interaction. The two lines must arise from the nonequivalent protons α and β to the pyrrole ring. Since these protons constitute an $\mathrm{A}_{2} \mathrm{~B}_{2}$ or $\mathrm{A}_{2} \mathrm{X}_{2}$ system, the lines are expected to be split into complex multiplets. ${ }^{17}$ The observed width of
(16) This sample was supplied by Dr. R. Livingston of the University of Minnesota to Dr. E. Charney of the NIH. and Dr. Charney made a portion of it available for this work.

15 c.p.s. is large enough to obscure such splitting; indeed, the width probably results partially from unresolved splitting and partially from hindered molecular rotation in the viscous solvent. No $\mathrm{N}-\mathrm{H}$ line was observed, presumably due to exchange with deuterium in the solvent.

Applications to Porphyrin Structure Studies.The tabulation of characteristic chemical shifts for a number of porphyrins opens the way for the use of this technique in structure elucidation of porphyrins and related molecules. The differences shown in the spectra of the closely related isomers coproporphyrin-1 and -3 indicate that in suitable cases n.m.r. will be a powerful analytical tool in porphyrin research. Further studies of known porphyrins may permit the development of a more complete relation between chemical shifts and specific locations of functional groups, thereby considerably extending the utility of the technique.
(17) J. A. Pople, W. G. Schneider and H. J. Bernstein, " High Resolution Nuclear Magnetic Resonance." McGraw-Hill Book Co., New York, N. Y., 1959.
[Contribution from the Department of Chemistry, University of Southern Californta, Los Anoeles 7, Calipornia]

The Crystal and Molecular Structure of \mathbf{S}_{6} (Sulfur-6)

By Jerry Donohue, Aimery Caron and Elihu Goldish
Received April 7. 1961

An X-ray crystallographic study of rhombohedral sulfur has been carried out. The crystals consist of hexameric mole cules, S_{8}, with symmetry $\overline{3} \mathrm{~m}$. Fourier and least squares refinement of the atomic parameters give the following structural quantities: $S-S$ bond length, $2.057 \pm 0.018 \AA$., $S-S-S$ bond angle, $102.2 \pm 1.6^{\circ}, S-S-S-S$ torsion angle, $74.5 \pm 2.5^{\circ}$. These values are compared with those found in orthorhombic sulfur, S_{8}, and are used in a discussion of the potential function for rotation about the $S-S$ bond together with the $S-S$ - S bending force constant.

Introduction

An allotrope of sulfur discovered by Engel ${ }^{1}$ was shown to be a hexamer by Aten. ${ }^{2}$ The results of an incomplete X-ray study by Frondel and Whitfield ${ }^{3}$ together with the morphological observations of Friedel ${ }^{4}$ prompted Donnay ${ }^{5}$ to suggest that the substance was rhombohedral, space group $R \overline{3}$ $\left(\mathrm{C}_{31}{ }^{2}\right.$, No. 148) with six atoms in a unit cell having $a=6.45 \mathrm{kX}$., $\alpha=115^{\circ} 18^{\prime}$. The corresponding hexagonal lattice constants are $A=10.9 \mathrm{kX}$., $C=4.26 \mathrm{kX}$. These conclusions were verified in our preliminary note. ${ }^{6}$ We wish now to report the results of our refinement of this structure.

Experimental

Crystals of S_{8} were prepared by the method described by Aten. ${ }^{2}$ They were mounted in the usual way, and intensity data were collected for the ($h k 0$) and $0 k l$) zones in a Weissenberg camera with unfiltered $\mathrm{CuK} \alpha$ radiation. The exposure times were limited to about an hour by the instability of the crystals, but the intensity range of the reflections was increased by using small angles of oscillation. Intensities were estimated visually. The ($h k 0$) intensities were corrected for absorption by use of the powder rod formula and the value 0.25 mm . for the radius. No cor-

[^0]rection was applied to the (0 kl) reflections because the crystal used was much smaller.
The lattice constants were determined from a multiple exposure powder photograph. The hexagonal unit cell was chosen for use in this and all calculations in preference to the rhombohedral one. ${ }^{7}$ The powder data, which are given in full elsewhere, ${ }^{8}$ give the following results
$A=10.818 \pm 0.002 \AA ., C=4.280 \pm 0.001 \AA$.
($\lambda \mathrm{CuK}_{\alpha}=1.5418 \AA$.)
In agreement with the results of Frondel and Whitfield ${ }^{8}$ it was found that the axis of symmetry was threefold and that there were no vertical planes of symmetry. As predicted by Donnay, ${ }^{5}$ only those reflections having $-h+k+l$ $=3 n$ were observed. The space group is therefore established as $\mathrm{R} \overline{3}$. The calculated density for 18 sulfur atoms per unit cell is $2.21 \mathrm{~g} . \mathrm{cm}^{-3}$, as compared with the observed value ${ }^{1}$ of $2.14 \mathrm{~g} . \mathrm{cm}^{-3}$.

Derivation of the Structure.-The general position of the space group is 18 -fold. There are thus three positional parameters to be determined. The required molecular symmetry is $\overline{3}$. Trial values for x and y were obtained by assuming S_{6} molecules having bond lengths $2.04 \AA$. and bond angles 104° and then applying the method of Knott. ${ }^{9} \quad F$ values for the ($h k 0$) reflections were calculated, and the signs of all 25 of them could be assigned with confidence. The form factor for

[^1]

Fig. 1.-Electron-density projection on (001). Contours at intervals of $2.5 \mathrm{e} . \AA^{-2}$; the zero contour is dashed.
sulfur determined experimentally by Abrahams ${ }^{10}$ in his refinement of the structure of orthorhombic sulfur was used in these calculations. New values for x and y were obtained from a projection of the electron density on (00.1), which is shown in Fig. 1. This figure differs from the one given in our preliminary note because the coefficients used have now been corrected for absorption. It is interesting that this correction leads to changes of only $0.001 \AA$. in x and $0.004 \AA$. in y. A projection made with calculated F values was then used to estimate the series termination corrections. These corrections were $-0.001 \AA$. in x and $-0.012 \AA$. in y.

The ($h k 0$) data were next treated by the method of least squares, with the two positional parameters, the scale factor and an isotropic temperature factor, B, as variables. The peak shape in Fig. 1 shows that anisotropic temperature factors are not required. Two cycles of least squares led to changes of $-0.011 \AA$. in x and $-0.024 \AA$. in y, and of $+0.423 \AA .^{2}$ in B. The changes in x and y between the first and second cycles of least squares were both $0.001 \AA$., showing that convergence had been attained. The progress of the refinement of the x and y parameters is presented in Table I.

Table I
Values of x and y Obtained by Various Methods

	x	y
Knott's method	0.145	0.189
Fourier uncor. for absorption	.1459	.1904
Fourier cor. for absorption	.1460	.1900
Fourier cor. for absorption and termina-		
tion errors	.1459	.1889
Initial least squares values	.1458	.1896
Least squares values after the first cycle	.1447	.1873
Least squares values after the second (and		
last) cycle	.1448	.1874
Final values	.1454	.1882
σ	.0012	.0016

The assumed trial model allows two values for the z parameter, $c a .+0.1$ or -0.1 . Structure (10) S. (Abrahams Acta Cryat. 8. 601 (10.5.).

Fig. 2.-The structure viewed along [001].
factor calculation of the (0 kl) reflections gave for the former an R value of 19%, for the latter, 50%. Starting from the value +0.1 , the z parameter, the scale factor, and temperature factor dependent on l^{2} were refined by least squares. This procedure gave an optimum value for z of $+0.1055, \sigma=0.0020$, and a B value of $-0.89 \AA .{ }^{2}$ relative to the f curve of Abrahams. ${ }^{10}$

The observed and calculated structure factors are presented in Table II. The conventional discrepancy figures are $R(h k 0)=13.2 \%, R(0 k l)=$ $11.3 \%, R$ (over-all) $=12.5 \%$. These could doubtless be made smaller by the pointless device of constructing an empirical f-curve different from that of Abrahams.

Discussion

The S_{6} molecule is a puckered ring with the chair conformation. The S-S bond length is $2.057 \pm$ $0.018 \AA$., the S-S-S bond angle, ϑ, is $102.2 \pm 1.6^{\circ}$, and the S-S-S-S torsion angle, φ, is $74.5 \pm 2.5^{\circ}$. The uncertainties quoted are standard errors. These values, together with the corresponding values for S_{8} in orthorhombic sulfur, ${ }^{10-13}$ and the significance levels of the differences, are compared in Table III. It should be noted that while the bond lengths are not significantly different, the bond angles are and the torsion angles highly so.

The intermolecular contacts are listed in Table III. Each sulfur atom is virtually equidistant from three sulfur atoms in neighboring molecules so that each molecule has eighteen such contacts. The next shortest distances are $3.75 \AA$. (6 per molecule) and $3.85 \AA$. (12 per molecule). The large number of nearly equal short intermolecular contacts leads to a very efficient packing, as shown in Fig. 2. In the case of orthorhombic sulfur, the number of such contacts per molecule is smaller

[^2]| | Table II | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observbd and Calculated Structurb Factors | | | | | | | | | | | |
| * | ki | Fallod. | Fotad. | - | k 6 | $F_{\text {colec }}$. | $F_{\text {obud }}$ | h | k | $F_{\text {madad }}$ | $F_{\text {obad. }}$ |
| 1 | 10 | 61.4 | 84.3 | 7 | 10 | 8.7 | <16.0 | 0 | 24 | 23.7 | <69.7 |
| 1 | 40 | -84.9 | 74.3 | 7 | 40 | -32.0 | 37.9 | | 54 | 30.0 | <64.6 |
| 1 | 70 | -50.0 | 59.8 | 8 | 20 | -29.4 | 37.1 | 0 | 84 | 47.7 | 48.0 |
| | 10.0 | -14.0 | 12.5 | 8 | 50 | -1.9 | <6.7 | 0 | 15 | -66.7 | < 55.9 |
| 2 | 20 | -145.9 | 149.8 | 9 | 00 | -51.9 | 58.8 | | 45 | 4.1 | <45.2 |
| 2 | 50 | -98.1 | 91.3 | 9 | 30 | 46.1 | 40.8 | | $1 \overline{1}$ | 210.9 | 179.8 |
| 2 | 80 | 35.2 | 43.8 | | .1.0 | 1.0 | <9.3 | | 4 1 | -132.6 | 158.6 |
| 3 | 00 | -156.6 | 143.0 | | 2.0.0 | -17.0 | 11.2 | | 7 I | 6.9 | <65.8 |
| 3 | 30 | 29.4 | 32.6 | 0 | 21 | 54.6 | 62.5 | | 0.10.ī | -65.6 | 74.8 |
| 3 | 60 | -23.4 | 26.2 | 0 | 51 | 97.2 | 129.0 | 0 | $2 \overline{2}$ | -87.0 | 74.3 |
| 3 | 90 | 45.1 | 38.3 | 0 | 81 | 13.1 | <69.4 | 0 | $5 \overline{2}$ | -6.9 | <01.4 |
| 4 | 10 | 147.0 | 130.0 | | . 11.1 | -43.7 | <43.7 | | $8 \overline{2}$ | -91.0 | 104.3 |
| 4 | 40 | -27.1 | 37.3 | 0 | 12 | 70.1 | 60.3 | | 0.11. $\overline{2}$ | 16.2 | <36.3 |
| 4 | 70 | 70.6 | 76.0 | 0 | 42 | 113.5 | 112.5 | 0 | $3 \overline{3}$ | -64.5 | 64.5 |
| 5 | 20 | 191.7 | 163.8 | 0 | 72 | 11.2 | <69.2 | | $6 \overline{3}$ | -5.9 | <69.7 |
| 5 | 50 | -36.7 | 46.8 | | 10.2 | 34.5 | <53.8 | 0 | $9 \overline{3}$ | -54.7 | 57.8 |
| 5 | 80 | 14.9 | 10.6 | 0 | 03 | -102.1 | 92.3 | 0 | 14 | -91.7 | 81.8 |
| 6 | 00 | 100.5 | 90.0 | 0 | 33 | 129.6 | 119.1 | 0 | $4 \overline{4}$ | -14.2 | <67.7 |
| 6 | 30 | -25.2 | 39.4 | 0 | 63 | -47.8 | <69.7 | | 74 | -9.2 | <51.3 |
| 6 | 60 | -13.2 | 11.7 | 0 | 93 | 92.2 | 87.9 | | 25 | 8.2 | < 54.0 |
| | | | | | | | | 0 | 5 5 | -24.5 | <30.6 |

Table III
Distances and Angles in S_{b} and S_{6}

Bond length
 Bond angle
 Torsion angle
 Shortest intramolecular non-bonded distance
 Van der Waals distances shorter than 3.850 A ., followed by the number of such distances per molecule

S_{t}
$2.057 \pm 0.018 \AA$.
$102.2^{\circ} \pm 1.6^{\circ}$
$74.5^{\circ} \pm 2.5^{\circ}$
$3.202 \AA$.
$3.501 \AA .(12)$
$3.526 \AA .(6)$
$3.749 \AA .(6)$
a Percentage probability that the two distances or angles are different by chance only.

S	Pa
$2.059 \pm 0.002 \AA$.	91
$107.9^{\circ} \pm 0.6^{\circ}$	0.08
$98.9^{\circ} \pm 0.7^{\circ}$	$\ll 0.002$
3.312 A.	
3.374 A. (2)	
3.504 A. (4)	
3.703 A. (4)	
3.773 A. (2)	
3.803 A. (4)	
3.815 A. (4)	
3.826 A. (4)	
3.828 A. (4)	

(see Table III), a fact which partially accounts for the lower density of $2.07 \mathrm{~g} . \mathrm{cm}^{-3}$ for that substance, as compared with the value $2.21 \mathrm{~g} . \mathrm{cm}^{-3}$ for rhombohedral sulfur, although the larger hole in the center of the 8 -ring molecule certainly must be a factor here also.

In an earlier discussion, Pauling ${ }^{14}$ proposed that the stability associated with the S_{8} molecule could be explained on the basis of the "normal" values for the angles ϑ and φ and pointed out that for symmetrical staggered rings containing n atoms (n even), with point-group symmetry nim2 (not $D_{n \mathrm{~b}}$, as stated by Pauling), ϑ and φ are not independent, but are related by the equation

$$
\begin{equation*}
\sin ^{2} \frac{\varphi}{2}=\frac{\cos (2 \pi / n)+\cos \vartheta}{1+\cos \vartheta} \tag{1}
\end{equation*}
$$

This furction, for $n=6$ and 8 , is shown in Fig. 3. The data then available suggested that the normal values for the angles were $\vartheta_{0}=105^{\circ}, \varphi_{0}=100^{\circ}$; the deviations of φ from this value, for $\varphi=105^{\circ}$, are, for 6,8 and 10 membered rings, $30^{\circ}, 2^{\circ}$ and 19°, respectively, and this fact accounted for the stability of the S_{8} molecule. The normal value for φ was stated by Pauling to be a consequence mainly

[^3]of the repulsion of the $\mathrm{p} \pi$ electrons, which, "according to simple theory," is proportional to $\sin ^{2} \varphi$. This discussion was modified recently by Pauling ${ }^{15}$: he assumed: (i) that the energy as a function of φ had the simple form $E=A \cos \varphi+B \cos ^{2} \varphi$; (ii) that φ_{0} was 102° as indicated by the data on $\mathrm{S}_{8}{ }^{16.17}$; (iii) that the S_{8} molecule was unstrained; (iv) that the S_{8} molecule had $\vartheta=104^{\circ}$ and $\varphi=$ 71°; (v) that all the strain in this molecule was torsion strain; and (vi) that the values given by Rossini, et al., ${ }^{18}$ corresponded to a difference in enthalpy of S_{6} and S_{8} of $1.10 \mathrm{kcal} . /$ mole per S-S bond. These assumptions lead to $A=1.6 \mathrm{kcal} . /$ mole and $B=3.9 \mathrm{kcal} . / \mathrm{mole}$ (not vice versa as given by Pauling).

However, not only are more accurate data for orthorhombic sulfur available, but also the present study gives values for ϑ and φ in S_{6} which are a little different from those assumed above (see Table III). Furthermore there is additional information
(15) 1. Pauling. "Nature of the Chemical Bond." 3rd Ed., Cornell University Press, Ithaca. New York, 1960. p. 135
(16) B. B. Warren and J. T. Burwell. J. Chem. Phys., 3, 6 (1935).
(17) C.S. Lu and J. Donohue, J. Am. Chem. Soc., 66, 818 (1944).
(18) F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine and I. Jaffe, National Burear of Standards Circular 500. Government Print. ing Office, Washington. D. C., 1952, p. 36.

Table IV
Molecular Constants for Sulfur

	v_{0}	4		$\begin{gathered} \text { Corce- } \\ 0 \text { in } \\ \substack{\text { sin }} \end{gathered}$	c_{1}	c^{2}	$\underset{\substack{\text { rotartio } \\ 0_{0}}}{\text { Barr }}$	$\begin{aligned} & \text { tom } \\ & 180^{\circ} \end{aligned}$	Assumptionse
A	106.4	91.2	(154)	(154)	12.61	0.53	13.1	12.1	Spectroscopic \bar{k} for S_{8} and S_{8}
B	106.6	(92.0)	133 ($=$)	133	10.85	. 78	11.6	10.1	Obsd. $\bar{\varphi}_{0}, k\left(\mathrm{~S}_{8}\right)=k\left(\mathrm{~S}_{8}\right)$
C	(106.9)	(92.0)	122	170	10.52	. 73	11.3	9.8	Obsd. $\bar{\vartheta}_{v}$, obsd. $\bar{\varphi}_{0}$
D	(106.9)	93.4	108 ($=$)	108	8.64	1.07	9.7	7.6	Obsd. $\bar{v}_{0}, k\left(\mathrm{~S}_{0}\right)=k\left(\mathrm{~S}_{0}\right)$
E	(106.9)	(94.6)	74	101	7.54	1.21	8.8	6.4	Obsd. $\bar{\vartheta}_{0}, \varphi_{0}$ from Fig. 5
F	(107.9)	(98.9)	65		4.90	1.52	6.5	3.5	S_{9} strainless

concerning the normal values ϑ_{0} and φ_{0}, and, finally, the values in the National Bureau of Standards Tables give $1.20 \mathrm{kcal} . / \mathrm{mole}$ per $\mathrm{S}-\mathrm{S}$ bond for the enthalpy difference.

The average value of seven different $S-S-S$ bond angles as observed in $\mathrm{BaS}_{4} \cdot \mathrm{H}_{2} \mathrm{O},{ }^{19} \mathrm{Cs}_{2} \mathrm{~S}_{8}{ }^{20}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}_{3}{ }^{21}$ is 106.9°. The observed equilibrium values for S_{6} and S_{8}, as shown in Fig. 4, then imply a value for φ_{0} of about 94.6°. Observed values of $\mathrm{S}-\mathrm{S}-\mathrm{S}-\mathrm{S}, \mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{S}, \mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}$ and $\mathrm{Cl}-\mathrm{S}-\mathrm{S}-\mathrm{Cl}$ torsion angles show a rather wide scatter: five values in the two polysulfide ions mentioned above average to 74.6°; six values in neutral molecules and in ions where the charge is not on the sulfur atoms, viz., diglycylcystine, ${ }^{22} \mathrm{~S}_{2} \mathrm{Cl}_{2},{ }^{23} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}_{3}$, cystine, ${ }^{24}$ cystine dihydrochloride ${ }^{25}$ and cystine dihydrobromide ${ }^{26}$ average to 92.0°. Distortions apparently occur in the crystals containing the polysulfide ions.

Although the S_{6} molecule is strained relative to the S_{8} molecule, it would be a remarkable coincidence if the S_{8} molecule were not strained at all relative to the normal values of both ϑ and φ. Indeed, the average values quoted above do in fact lead to a small strain in the S_{8} molecule.

We assume that the energy per atom of a sulfur ring is given by the function

$$
\begin{equation*}
E(\vartheta, \varphi)=c_{1} \cos 2 \varphi+c_{2} \cos \varphi+\frac{1}{2} k\left(\vartheta_{0}-\vartheta\right)^{2} \tag{2}
\end{equation*}
$$

The strain energy is then given by the expression

$$
\begin{equation*}
E_{\mathrm{atrala}}=E(\vartheta, \varphi)-E\left(\varphi_{0}, \varphi_{0}\right) \tag{3}
\end{equation*}
$$

There are thus six constants to be evaluated: $\vartheta_{0}, \varphi_{0}, k\left(\mathrm{~S}_{6}\right), k\left(\mathrm{~S}_{8}\right), c_{1}$ and c_{2}. The experimentally observed quantities are: (i) the equilibrium angles in S_{8}, (ii) the equilibrium angles in S_{8}, and (iii) the difference in enthalpy between S_{8} and S_{8}. In addition, the values $\vartheta_{0}=106.9^{\circ}$ and $\varphi_{0}=92.0^{\circ}$ are suggested by the limited molecular structure data, but the more reliable value of $\vartheta_{0}=106.9^{\circ}$ implies the slightly different value for φ_{0} of 94.6°. Furthermore, the S-S-S bending force constant may be estimated from the spectroscopic data of
(19) S. C. Abrahatrs, Acta Cryst., 7, 423 (1954).
(20) S. C. Abrahams and E. Grison. ibid.. 6. 206 (1953).
(21) J. Donohue and V. Schomaker. J. Chem. Phys.. 16, 82 (1948).
(22) H. L. Yakel. Jr., and E. W. Hughes, Acta Crysi., 7, 291 (1954).
(23) G. Guthrie, Dissertation. California Institute of Technology, 1949.
(24) B. M. Oughton and P. M. Harrison, Acia Crysh., 12, 396 (1959).
(25) L. K. Steinrauf, J. Peterson and L. H. Jensen, J. Am. Chem. Soc., 80, 3835 (1958).
(26) J. Peterson, L. K. Steinrauf and L. H. Jensen. Acta Cryst.. 13, 104 (1960).

Stammrich, Forneris and Sone ${ }^{27}$ for SCl_{2} and of Linton and Nixon ${ }^{28}$ for $\mathrm{S}\left(\mathrm{SiH}_{3}\right)_{2}$; the respective values are $173 \mathrm{kcal} . / \mathrm{rad} .{ }^{2} / \mathrm{mole}$ and $135 \mathrm{kcal} . /$ $\mathrm{rad} .{ }^{2} / \mathrm{mole}$. A summary of the values of molecular constants, as obtained under various assump. tions, is presented in Table IV, where it may be

Fig. 3.-Bond angle vs. torsion angle for staggered rings with point symmetry fim2 containing six and eight atoms.
seen that while the values of ϑ_{0} and φ_{0} do not vary widely, those of the other constants do. Although it is difficult to choose, on the basis of the limited available data, just which set is the most reasonable, it seems very unlikely that the true value of any particular constant lies outside the limits of the table. The strain energies of the equilibrium conformations of various sulfur rings calculated by the use of the constants of Table IV are shown in Table V.

Table V
Strain Energies of Sut.pur Rings in Kcal./Mole/S-S

	Bond			
Assumptions	St	S_{4}	St	S io
A	19.4	1.5	0.3	2.3
B	17.2	1.4	.2	1.8
C	17.6	1.4	.2	1.8
D	14.4	1.3	.1	1.3
E	12.5	1.3	.1	1.0
F	9.8	1.2	.0	0.4

Acknowledgments.-This work was supported in part by the Office of Ordnance Research, U. S. Army, and in part by the National Science Foundation. We wish to thank Professors E. Heilbronner and D. A. Dows for helpful discussion. All of the figures were drawn by Mrs. Maryellin Reinecke.
(27) H. Stammrich, R. Forneris and K. Sone. J. Chem. Phys., 23, 972 (1955).
(28) H. R. Linton and E. R. Nixon. ibid.. 29, 921 (1958).

[^0]: (1) E. C. Engel, Compi. Rend. Acad. Sci. Paris. 112, 866 (1891).
 (2) A. Aten, Z. physik. Chem., 88, 321 (1914).
 (3) C. Frondel and R. E. Whitfieid. Acta Cryst., 3, 242 (1050).
 (4) C. Friedel, C. R. Acad. Sci. Paris, 112, 834 (1891).
 (5) J. D. H. Donnay. Acta Crust.. 8, 245 (1955).
 (6) J. Donohue. A. Caron and F. Goldish. Natare. 182. 518 (1958).

[^1]: (7) M. J. Buerger, " Elementary Crystallography." John Wiley and Sons, Inc. New York. N. Y.. 1956. p. 106.
 (8) A. Caron and J. Donohue. J. Phys. Chem., 64, 1767 (1960).
 (9) G. Knott, Pror. Phys Sor. Lond., 62, 229 (1940).

[^2]: (11) S. C. Abrahams, ibil., 14, 311 (1961),
 (12) A. Caron and J. Donohue, ibit. 14. 548 (1961)
 (1:3) I. Domohue, to be miblished.

[^3]: (14) L. Pauling, Proc. Natl. Acad. Sci., 35, 495 (1949).

